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  A fast and stable inversion scheme has been developed using the localized nonlinear 
(LN) approximation to analyze electromagnetic fields obtained in a single borehole 
environment. The medium is assumed to be cylindrically symmetric about the borehole, and 
to maintain the symmetry a vertical magnetic dipole is used as a source. The efficiency and 
robustness of an inversion scheme is very much dependent on the proper use of Lagrange 
multiplier, which is often provided manually to achieve a desired convergence. We utilize an 
automatic Lagrange multiplier selection scheme, which enhances the utility of the inversion 
scheme in handling field data. In this selection scheme, the integral equation (IE) method is 
quite attractive in speed because Green’s functions, the most time consuming part in IE 
methods, are repeatedly re-usable throughout the selection procedure. The inversion scheme 
using the LN approximation has been tested to show its stability and efficiency using 
synthetic and field data. The inverted result from the field data is successfully compared with 
resistivity logging data measured in the same borehole. 
 



1. Introduction 
 

High-resolution imaging of electrical conductivity has been the subject of many studies in 
cross-hole tomography using electromagnetic (EM) fields (Zhou et al., 1993; Wilt et al., 1995; 
Alumbaugh and Morrison, 1995; Newman, 1995; Alumbaugh and Newman, 1997). Although 
the theoretical understanding and associated field practices for cross-hole EM methods are 
relatively mature, these techniques are costly and sometimes it is difficult to find two adjacent 
boreholes for cross-hole surveys. The cost can be greatly reduced if a single-hole survey 
method could be developed. 
 

The main advantage of integral equation (IE) method over the finite difference (FD) 
and/or finite-element (FE) methods is its greater suitability for inversion. IE formulation 
readily contains a sensitivity matrix, which can be revised at each inversion iteration at little 
expense. With the FD or FE method, in contrast, the sensitivity matrix has to be recomputed 
at each iteration at a cost nearly equal to that of full forward modeling. The IE method, 
however, has to overcome severe practical limitations imposed on the numerical size of the 
anomalous domain for inversion purposes. In this direction, several approximate methods 
such as the localized nonlinear (LN) approximation (Habashy et al., 1993) and quasi-linear 
approximation (Zhdanov and Fang, 1996) have been developed. Recently, Lee et al. (2002) 
used the LN approximation for a cylindrically symmetric model to image single-hole EM data. 

 
In this paper an advantage of the LN approximation is exploited with applications to 

inversion of borehole EM data. We begin our discussion with a critical check of the accuracy 
of LN approximation for a cylindrically symmetric model. We then describe our inversion 
algorithm and demonstrate the stability and effectiveness of this approach by inverting 
synthetic data. Finally, we present an example application to field data measured as a part of 
the Lost Hills CO2 pilot project in southern California, U. S. A. 
 
2. LN approximation 
 
The LN approximation of IE solutions for a cylindrically symmetric model is described in Lee 
et al. (2002). For completeness, the algorithm is briefly outlined here. 
 

Assuming an e+iωt time dependency and neglecting displacement currents, an IE 
solution for the electric field E(r) at r can be written by (Hohmann, 1975) 
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where Eb(r) is the background electric field, GE(r-r′) the Green’s tensor, σ the conductivity, 
ω the angular frequency, and µ the magnetic permeability. In equation (1), ∆σ means the 
excess conductivity, and the term ∆σE inside the integral is called the scattering current 
(Hohmann, 1975). To obtain a numerical solution, the anomalous body is usually divided into 
a number of cells, and a constant electric field is assigned to each cell (Hohmann, 1988). The 
process involved in volume IE methods requires computing time proportional to the number 
of cells used, and it quickly becomes impractical as the size of the inhomogeneity is increased 
to handle realistic problems. 
 

For some important class of problems the complexity associated with a full 3-D 
problem can be reduced to something much simpler. A model whose electrical conductivities 
are cylindrically symmetric in the vicinity of a borehole is such an example. In order to 
preserve the cylindrical symmetry in the resulting EM fields, a horizontal loop current source 
or a vertical magnetic dipole may be considered in the borehole. In this case the problem is 
scalar when formulated using the azimuthal electric field Eϕ, and the analogous IE solution is 
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where zr

r
+= ρr  and ''' zr

r
+= ρr  are the position vectors, and the electric field and Green’s 

function are both scalar. The Green’s function is given in the form of a Hankel transform as 
(Ward and Hohmann, 1988) 
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where ub = (λ2+iωµσb)1/2. Since measurements are usually made for magnetic fields, equation 
(2) is modified as 
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where GH(r-r′) translates the scattering current ∆σ(r′)Eϕ(r′) at r′ to the magnetic field at r. 



 
Using equations (2) through (4), we can obtain an IE solution by first dividing a (ρ, z) 

cross-section into a number of cells, and formulate a system of equations for the electric field 
using a pulse basis function. Sena and Toksoz (1990) presented a crosshole inversion study 
for permittivity and conductivity in cylindrically symmetric medium using high-frequency 
EM, and Alumbaugh and Morrison (1995) investigated cross-hole EM tomography using an 
iterative Born approximation and LN approximation of Habashy et al. (1993). 
 

The LN approximation offers an efficient and reasonably accurate electric field 
solution without deriving the full IE solution (Habashy et al., 1993). For the type of problem 
where there is only the azimuthal electric field, a good LN approximation to equation (2) is 
given by 
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Substituting equation (5) into equation (4) yields an approximate magnetic-field solution  
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To illustrate the efficiency and usefulness of the LN numerical solution, especially in a 

single-hole application, we consider a simple model consisting of a conductive ring about a 
borehole axis in a uniform 100 ohm-m whole space. The cross section of the ring is a 3 m by 
4 m rectangle as shown in Figure 1. Let us vary the transmitter-receiver offset (a in Figure 1), 
borehole-to-conductor distance (b in Figure 1), and the conductivity contrast (σ2/σ1) and find 
out how the LN approximated vertical magnetic field compares with the result obtained from 
the full FE method (Lee et al., 2003). Unless otherwise indicated the frequency used is 100 
kHz throughout. 
 

Figure 2 shows a comparison in secondary vertical magnetic fields between the FE 
(solid and dashed lines) and LN (symbols) solutions for three different transmitter-receiver 
separations: 4 m, 6 m, and 8 m. The center of the body is chosen as z = 0, and plots are made 



at the transmitter-receiver midpoint. The conductivity contrast used is 10, and the borehole-to-
conductor distance is 3 m. For all separations, the two solutions agree very well. More 
anomalies can be observed in the imaginary part. The anomaly also gets stronger for shorter 
source-receiver separations. At the separation of 4 m the imaginary part of the anomaly is 2.0 
× 10-4 A/m, and it is about 8 % of the primary field of 2.48 × 10-3 A/m (not shown here). 
 

Next, we consider EM responses by varying the borehole-to-conductor separation, 
while the conductivity contrast and transmitter-receiver separation are fixed to 10 and 4 m, 
respectively. When the separation is small, it is anticipated that the LN approximation may 
not be as good, because the rapid change in electric fields in the vicinity of the transmitter is 
not a favorable condition for the LN approximation. Figure 3 confirms this is indeed the case. 
For the separation of 1 m, we can see significant difference in the peak values of the real part 
between the FE and LN solutions. The difference is less in the imaginary part. 
 

We are also interested in the quality of LN solutions when the conductivity of the 
body is increased. The transmitter-receiver separation, borehole-to-conductor distance, and 
vertical distance between the transmitter and the top of conductor are fixed to 6 m, 3 m, and 
4.5 m, respectively. The LN approximation is very well up to the conductivity contrast of 200 
as shown in Figure 4. The imaginary part of the LN solution starts deviating from the FE 
solution beyond the conductivity contrast of 200, while the real part still shows a good 
agreement. 
 

Finally, a comparison is made for magnetic responses in frequency (Figure 5). The 
conductivity contrast, transmitter-receiver separation, and borehole-to-conductor distance are 
fixed to 10, 6 m, and 3 m, respectively, and FE and LN solutions are obtained for frequencies 
ranging from 200 Hz to 80 MHz. The two solutions show a good agreement all the way up to 
2 MHz (see details on the right of Figure 5).  
 
3. Inversion 
 
Based on the encouraging results of the LN approximation, we have proceeded to implement 
the inversion of borehole EM data. In the following, we first review the work of Lee et al. 
(2002). Measurements are made in the same borehole as the transmitter. Upon dividing the 
inhomogeneity into K elements, the secondary magnetic field at the i-th receiver position in 
the borehole may be written as 
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where the subscript k denotes the k-th element. The corresponding Green’s function for the 
magnetic field may be deduced from the electric-field Green’s function (3) as  
 

 ∫
∞ −−

=−
0

1
2

'||

)'(
4

1)','( λλρλ
ωµπ

ρ dJ
u

e
i

zzG
b

zzu

iH

b

.   (8) 

 
For the inversion, the sensitivity of the magnetic field with respect to the change in 
conductivity can be easily obtained from equation (7). Taking derivative of magnetic fields 
with respect to the j-th conductivity parameter and neglecting the dependence of γj on ∆σj, the 
sensitivity becomes 
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which can be easily evaluated by integrating over the j-th element. 
 
 The inversion procedure starts with a data misfit ||Wd[H(σ)-Hd]||2, where ||•|| denotes 
the Euclidean norm and the subscript d represents data. The data weighting matrix Wd is used 
to give relative weights to individual data. If a perturbation δσ is allowed to the conductivity, 
the misfit takes a form ||Wd[H(σ+δσ)-Hd]||2, and the total objective functional may be written 
as 
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where the second term on the right-hand side is added to impose a smoothness constraint, and 
Wσ is the weighting matrix for model parameters and λ is the Lagrange multiplier that 
controls the trade-off between data misfit and parameter smoothness. Expanding the misfit in 
δσ using the Taylor series, discarding terms higher than the square term, and letting the 
variation of the functional with respect to δσ equal to zero, we can obtain a linear system of 
equations for the perturbation δσ as 
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where the superscript T indicates matrix transpose, and the entries of Jacobian matrix J are the 
sensitivity functions given in equation (9). 
 

 The stability of the inversion is largely controlled by requiring the conductivity to 
vary smoothly. Larger values of λ result in smooth and stable solutions at the expense of 
resolution. It even allows for the solution of grossly underdetermined problems (Tikhonov 
and Arsenin, 1977). In this single-hole inversion study, we employ the Occam approach, first 
proposed by Constable et al. (1987) (see also deGroot-Hedlin and Constable, 1990; Parker, 
1994), to determine an optimum Lagrange multiplier λ during the inversion process. The 
unique feature of the Occam approach is that the parameter λ is used at each iteration both as 
a step length control and a smoothing parameter. That is, equation (11) is solved for a series of 
trial values of λ and the rms misfit for each λ is evaluated by solving the 2-D forward 
problem. The Occam process thus chooses the model with the minimum misfit as the basis for 
the next iteration. The minimization can be carried out by means of a simple 1-D line search. 
In this selection scheme, the IE modeling is quite attractive in speed because Green’s 
functions, the most time consuming part in IE methods, are repeatedly re-usable throughout 
the selection procedure. In this study three times of forward modeling are conducted to select 
an optimum Lagrange multiplier at each iteration. 
 
 The conductivity model shown in the left of Figure 6 is chosen to evaluate the 
performance of extended Born inversion using the LN approximation. The model consists of 
two cylindrically symmetric bodies, one conductive (1 S/m) and the other resistive (0.01 S/m), 
in a whole space of 0.1 S/m. A FE scheme (Lee et al., 2003) is used to generate synthetic data. 
The accuracy of the FE scheme is estimated as a level of less than 1 % compared with the 
exact IE solution. Using a vertical magnetic dipole as a source, vertical magnetic fields are 
computed at five source-receiver offsets of 4 m through 8 m at three frequencies of 12 kHz, 
24 kHz and 42 kHz. Using 3-digit synthetic data generated by the FE method, the inversion is 
started with an initial model of 0.25 S/m uniform whole space. 
  
 After 6 iterations, the two bodies are clearly reconstructed as shown on the right of 
Figure 6. The recovered conductivity is found to be nearly the same in the conductive body 
but is overestimated in the resistive body. The inversion process is quite stable as shown in 
Figure 7, where the rms misfit decreases from the initial guess of 0.478 (not shown in Figure 



7) to under 0.01 after 6 iterations. The rms misfit of 0.01 is assumed to be a target misfit level 
because the error level in the synthetic responses is estimated to be about 1 %. Also, the 
smoothing parameter varies significantly during the inversion process. This means it is 
difficult to determine the parameter a priori. 
 
 Finally, the 2-D inversion algorithm has been applied to a set of single-hole field data 
obtained as a part of the Lost Hills CO2 pilot project in southern California in May 2001 
(Wilt, 2002). The EM data were measured with Geo-BILT, a newly built induction logging 
tool manufactured by Electromagnetic Instruments, Inc. Although the tool features a series of 
three-component sensors and a three-component source, only Mz–Hz (vertical magnetic fields 
due to a vertical magnetic dipole) data are utilized for this inversion experiment. The offsets 
between the source and receivers were 2 m and 5 m and the operating frequency was 6 kHz. 
 
 The initial inversion model is a uniform whole space of 0.25 S/m and our inversion is 
terminated after 6 iterations to produce a resistivity section shown on the right of Figure 8. 
The inversion process is quite stable as shown in Figure 9, where the rms misfit decreases 
from 0.307 (not shown in Figure 9) for the initial guess to 0.017 after 6 iterations. Further 
reduction of rms misfit is possible at the expense of overfitting. Note that a target misfit level 
is not known for the field data. The fit of 2-D model responses to the field data is quite well as 
shown in Figure 10, in which only the imaginary part is compared because the real part has 
very little anomaly. Due to the assumption of cylindrical symmetry the reconstructed image 
may be different from the real resistivity section especially in the far side from the borehole. 
The image near the borehole, however, is considered to be reasonable because it is 
comparable with a resistivity log obtained from induction logging in the same borehole, 
shown on the left of Figure 8. In particular, the resistive zone imaged around the borehole is 
quite similar with the logging result. Computing time required for the 2-D approximate 
inversion is about 10 minutes on a Pentium-4 1.5 GHz PC to obtain 539 conductivities from 
534 complex Hz fields after 6 iterations. 
 
4. Conclusions 
 
The extended Born or LN approximation of IE solution has been applied to inverting single-
hole EM data using a cylindrically symmetric model. The LN approximation is less accurate 
than a full solution but much superior to the simple Born approximation. Moreover, when 
applied to the cylindrically symmetric model with a vertical magnetic dipole source, the 
accuracy of LN approximation is greatly improved because electric fields are scalar and 
continuous everywhere. One of the most important steps in the inversion is the selection of a 



proper regularization parameter for stability. The LN solution provides an efficient means for 
selecting an optimum regularization parameter, because Green’s functions, the most time 
consuming part in IE methods, are repeatedly re-usable throughout inversion. In addition, the 
IE formulation readily contains a sensitivity matrix, which can be revised at each iteration at 
little expense. This fast inversion scheme has been tested on its stability and effectiveness 
using synthetic and field data. The reconstructed image from the field data was comparable 
with resistivity logging data. 
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Figure Captions 
 
Figure 1. A cylindrically symmetric model. The inhomogeneous body with a cross-section of 

3 by 4 m is cylindrically symmetric about the borehole in which source (Tx) and 
receiver (Rx) are inserted. The parameters a and b represent the source-receiver and 
horizontal hole-body separations, respectively. 

Figure 2. The effect of source-receiver separation on the vertical component of secondary 
magnetic fields. Operating frequency is 105 Hz. The 0.1 S/m body is located in a 
whole space of 0.01 S/m at 3 m horizontally away from the borehole.  

Figure 3. The effect of hole-body separation on the vertical component of secondary magnetic 
fields. The operating frequency is 105 Hz, the conductivity contrast between body and 
background is 10, and the source-receiver separation is 4 m. 

Figure 4. The effect of conductivity contrast between body and background on the secondary 
magnetic fields. The operating frequency is 105 Hz, the source-receiver separation is 6 
m and the horizontal hole-body separation is 3 m.  

Figure 5. The effect of operation frequency on the secondary magnetic fields. The source-
receiver separation is 6 m. The 0.1 S/m body is located in a whole space of 0.01 S/m 
at 3 m horizontally away from the borehole. 

Figure 6. Inversion of synthetic model. The model (left) used to calculate synthetic data for 
inversion test consists of two cylindrically symmetric bodies, of 1 S/m and 0.01 S/m, 
located in a whole-space of 0.1 S/m. An image of two conductors reconstructed from 
the synthetic data after 6th iteration. 

Figure 7. Convergence in rms misfit and associated Lagrange multiplier as a function of 
iteration during the synthetic model inversion. 

Figure 8. Resistivity section (right) derived from the inversion of single-hole EM data and a 
resistivity log (left) measured in the same borehole.  

Figure 9. Convergence in rms misfit and associated Lagrange multiplier during the inversion 
of field data. 

Figure 10. Comparison of field data and inverted model responses in the imaginary 
component. 
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Figure 1. A cylindrically symmetric model. The inhomogeneous body with a cross-section of 

3 by 4 m is cylindrically symmetric about the borehole in which source (Tx) and 
receiver (Rx) are inserted. The parameters a and b represent the source-receiver and 
horizontal hole-body separations, respectively. 
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Figure 2. The effect of source-receiver separation on the vertical component of secondary 

magnetic fields. Operating frequency is 105 Hz. The 0.1 S/m body is located in a 
whole space of 0.01 S/m at 3 m horizontally away from the borehole.  
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Figure 3. The effect of hole-body separation on the vertical component of secondary magnetic 

fields. The operating frequency is 105 Hz, the conductivity contrast between body 
and background is 10, and the source-receiver separation is 4 m. 
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Figure 4. The effect of conductivity contrast between body and background on the secondary 

magnetic fields. The operating frequency is 105 Hz, the source-receiver separation is 
6 m and the horizontal hole-body separation is 3 m.  
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Figure 5. The effect of operation frequency on the secondary magnetic fields. The source-

receiver separation is 6 m. The 0.1 S/m body is located in a whole space of 0.01 S/m 
at 3 m horizontally away from the borehole. 
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Figure 6. Inversion of synthetic model. The model (left) used to calculate synthetic data for 

inversion test consists of two cylindrically symmetric bodies, of 1 S/m and 0.01 S/m, 
located in a whole-space of 0.1 S/m. An image of two conductors reconstructed 
from the synthetic data after 6th iteration. 
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Figure 7. Convergence in rms misfit and associated Lagrange multiplier as a function of 

iteration during the synthetic model inversion. 
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Figure 8. Resistivity section (right) derived from the inversion of single-hole EM data and a 

resistivity log (left) measured in the same borehole.  
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Figure 9. Convergence in rms misfit and associated Lagrange multiplier during the inversion 

of field data. 
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Figure 10. Comparison of field data and inverted model responses in the imaginary 

component. 
 


